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1. Motivation and Objective

This report documents the current progress in the research and development of

modeling techniques for turbulent shear flows. These include a two-scale model for

compressible turbulent flows and a new energy transfer model. The former rep-

resents the status of our efforts to identify compressibility effects in turbulence.

The energy transfer model refines a weakly nonlinear wave model developed ear-

lier, which models directly the turbulent large structures. The objective of these

activities is to develop second-order closures for compressible turbulent flows.

2. Work Accomplished

2.1 A Two-Scale Model for Compressible Turbulent Flows

"Numerical simulations of 2D and 3D compressible turbulence have shown tha.t

the existence of shocklet structures and the energy transfer mechanism between

the kinetic energy and the thermal-energy are the two important compressibility

effects 1,2,3,4. These compressibility effects are incorporated into a new two-scale

model. The model is based on the proposition that the effect of compressibility in

turbulence is mainly on the energetic large eddies in turbulent shear flows. The small

eddies are affected only indirectly through the increased spectral energy transfer.

The development of the model and some results of its application to compressible

free shear layers are briefly described here. A more detailed analysis is included in

a NASA TM 5.

Firstly, it is assumed that the shocklet structures that may occur intermittently

in compressible turbulent flows are formed mainly by the collision of the energetic

turbulent eddies of large scale. The small eddies, which contain much less energy,

are less efficient in the formation of shocklet structures when they collide with

other eddies. Thus, the eddy shocklets scale with the energy containing eddies

and have more direct influence on the evolution of the large eddies than on the

smaller ones. The large vortical structures are intensified as they pass through the

shocklet. This process, in other words, enhances the vortex stretching mechanism

and increases the spectral energy transfer. In addition to the usual route of the

vortex stretching mechanism that has already been enhanced, the small eddies may

be generated directly from the passage of the large vortical structures through shock

waves These processes of enhanced energy transfer may then cause the spectrum

to depart from equilibrium. Another mechanism that may also contribute to the

non-equilibrium spectrum or the creation of vorticity is strongly related to the

pressure fluctuation. It has been shown by Kida and Orszag 3 and Lee et al. 9,

among others, that substantial vorticity is created by the baroclinic terms. The

creation of vorticity, however, occurs mainly at the shock wave.
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Based on the picture described above, the effect of compressibility in turbulence

is mainly on the energy containing large eddies or the low wavenumber fluctuations.

The large eddies respond more readily to changes in the compressible mean flow

resulting from either high speed or combustion. The straining of the large eddies due

to compressibility effects increases the spectral energy transfer to the small scales

through the mechanism of vortex stretching and direct generation. The smaller

scales, on the other hand, are only indirectly affected by compressibility. The energy

contained in the small scales in the high wavenumber part of the energy spectrum

is increased only as more energy is pumped in from the large eddies associated with

the low wavenumber part of the spectrum. To model the Favre-averaged mean

compressible turbulent quantities associated with these two distinct regimes in the

energy spectrum we solve the modeled transport equations for the kinetic energy

of the large eddy (kp) and the small eddy (k,) and the rate of energy transfer from

the large eddy to the small eddy (¢p) and the rate of energy dissipation (¢t). The

transport equations are

P _t = _vv [(_ + a_, -_v j + #rt_ v) --

= c'plg.T( ) -

_e'_ + P.D. (1)

_2
t-- pcp2p- - + E.S. (2)

kp

D_ d _T ) d_]

= +-- -- +
aT, dr' k, kt

(3)

(4)

P.D. and E.S. denote the effects of pressure-dilatation and eddy shocklets, respec-

tively. The definition of the model constants can be found in the NASA TM. The

present two-scale model for compressible turbulence is built upon a parallel model

for incompressible flows, Duncan et al. 6. Models for the terms responsible for the

compressibility effects are needed to close the equations. In this analysis, we have

adopted Sarkax's 7 model for the pressure-dilatation terms. To model the effects of

the increased spectral energy transfer due to compressibility, a simple model has

been constructed through dimensional reasoning. Its coefficient has a M_ depen-

dence, similar to the dilatation dissipation model proposed by Zeman s and Sarkar

et al. 9. The compressibility corrections that they proposed have been implemented

successfully into k - e models, Viegas and Rubesin l°, into k - w models, Wilcox n

and into second-order closure models, Speziale and Sarkar n.

Fig. 1 shows the variation of the vorticity thickness growth rate, d6,,/dx, as a

function of convective Mach number. The vorticity thickness, 6_, is defined by

Vs-Vo
(dU/dy),_,_ " (5)
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The convective Mach number is defined as the ratio of the average convective

velocity of the dominant large scale structures, relative 'to the free stream, to the free

stream speeds of sound, Papamoschou and Roshko 13. The convective Mach number

has been shown to be an appropriate parameter to correlate experimental data and

to identify the effects of compressibility. The vorticity thickness growth rates for

compressible free shear flows, (d&,/dx)(Mc, U,/Uf,p,/&f), have been normalized

by the corresponding values for incompressible flows, (d_,/dx)i(O, Ua/Uf,p,/pl),

and are presented in Fig. 1. The value of (d_/dz)_ is obtained by using a relation,

Papamoschou and Roshko 13,

~
(1- + (2)'/')

u p.1+
(6)

The constant of proportionality isobtained by the present model calculationsper-

formed in the limit of Mc ---*0. Measured data are denoted by open symbols in Fig.

1. Without the compressibility corrections,the current two-scale model and the

two-scale model developed by Kim and Chen 14 (KC) predict a large reduction of

the growth rate only at very high convective Mach numbers. With the inclusion of

the effectsof eddy shocklets and the pressure work, the current compressible two-

scale model predicts a smooth reduction of the vorticitythickness growth rate as

the convective Mach number increases.The calculated growth rate curve levelsoff

at high convective Math numbers. It should be noted that in the present analysis

the convective Mach number of the shear layerisincreased by increasing the Mach

number of the high speed stream. According to the definitionof the convective

Mach number, there existsa maximum convective Mach number for a plane mixing

layer of the same fluidwith matched totaltemperature. That is,

l--r
tim = (r)

M --oo ( )1/=
2

where r =. U,/U! and 7 denotes the ratio of the specific heats of the working fluid.

For a value of R=O.1 , the limiting convective Mach number for a plane shear layer

of air is about 2.0.

Since it is the Reynolds shear stress that appears in the mean momentum equa-

tions and influences directly the development of the mean flow, it is interesting to

see how its peak value varies as a function of Me. Note that in the current analysis,

the Reynolds shear stress is related to the mean flow by a turbulent eddy viscosity,

#t. That is,

and

cTy
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In Fig. 2, the peak Reynolds shear stresses predicted by the present compressible

two-scale model are compared with measured data, Elliott and Samimy 15. The

predictions of the present model, without compressibility corrections and of the

KC model are also shown for comparison. The results show that, without the

inclusion of some forms of compressibility corrections, none of the two-scale models

tested, including the current model and the KC model, performs satisfactorily in the

calculations of compressible free shear layers. The present compressible two-scale

model under-predicts the absolute value of the peak Reynolds shear stress. However,

the trend observed in the experiment that the level of the peak Reynolds shear stress

decreases with increasing convective Mach number is picked up consistently by the

current compressible two-scale model. Note that the Reynolds shear stress has

been normalized by the square of the velocity difference of the two free streams.

The model also shows that the value of the peak Reynolds shear stress appears to be

independent of the velocity ratio of the free streams. In fact, the predicted variation

of the peak value of the Reynolds shear stress as a function of the convective Mach

number is similar to the predicted variation of the normalized vorticity thickness

growth rate as a function of the convective Mach number. This characteristic of

the present compressible two-scale model is consistent with the observation made

by Elliott and Samimy I5. They argue that, based on an integral analysis, the

decreasing trend of the level of the Reynolds shear stress, as the convective Mach

number is increased, is due mainly to the decrease of momentum thickness growth

rate. However, the two speed ratios considered here, 0.1 and 0.2, are nearly equal

to each other. Cases with a wider range of operating conditions, such as the speed

ratios and the working fluids, need to be examined before any conclusive statement

can be made.

To further validate the present compressible two-scale model, it is applied to the

compressible free shear layer corresponding to the Case 1 in Samimy and Elliott 16.

In this case, a fully expanded plane shear layer of air with Me = 0.51 and r = 0.36 is

examined. The calculated mean profile shown in Fig. 3 agrees reasonably well with

the measurement. As described previously, there are many possible causes for the

small difference in the outer region of the mixing zone. Fig. 4 shows the comparison

of the computed and the measured Reynolds shear stress. The present two-scale

model under-predicts the peak Reynolds shear stress by about 12%. The profile of

the Reynolds shear shear stress, however, agree very well with the measurement.

2.2 A New Energy Transfer Model for Turbulent Free Shear Flows

The model is built upon the weakly nonlinear wave models developed by Liou

and Morris 17. The development of the energy transfer model and some results of

its application to an incompressible free shear layer are briefly described here. A

more detailed analysis is included in a NASA TM is.

The random flow properties are split into three components,

], = F, + /, + /_ (10)

The fluctuation with respect to the long time-average component, Fi, is separated

into a component representing the large-scale motion, ]i, and one representing
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the residual fluctuations, ]_. The long time-average of tl/e instantaneous value

is denoted by an overbar,

= i /0 TI1, = F_ = -- Adt (11)
T,

For the large-scale fluctuation, a separable form of solution is assumed,

{u, v, p} = A(x) [fi(y),0(y),_(y)] exp [i(ax- wt)]. (12)

The bold face quantities denote a complex solution whose real part describes the

physical properties of the large-scale structures, a (= a_ + iai) denotes a complex

wavenumber and w the frequency. The governing equations for the local distribu-

tions of the large structures can be reduced to the Rayleigh equation in terms of

0,
d 2 d2U

_ dY 2 (_2) _ o___y2 } 0 -- 0 (13){( aU w ) (

The amplitude, A(x), appears as a parameter in the local calculationfor the _,0,;_

and isdetermined separately from the largescaleturbulent kineticenergy equation,

ok __OUi
U_ox I - ui%ox# o + (_ < ulu)>) e-

0

- Ox--'_ (ul < u;u_ >) + viscous terms (14)

where k = ½_. k denotes the turbulent kinetic energy of the large-scale struc-

ture. Note that in this analysis k denotes the turbulent kinetic energy of large

scale structure of a single mode. The kp defined in the first part of this report

represents the sum of the turbulent kinetic energy of all the modes in the entire

large-scale spectrum. <> represents a short time-average with an average inter-

val much smaller than T1 but much larger than the characteristic time scale of the

background small-scale fluctuation, Strange and Crighton x°. The interaction terms,

the third expression on the right hand side of equation (14), describe the transfer

of large-scale energy, presumably, to the small scales where energy is eventually

dissipated by viscosity. The detailed analysis of the weakly nonlinear wave models

and the numerical solution procedure used here can be found in Liou and Morris 17.

The spectral energy transfer results from the interactions between turbulent fluc-

tuations of different scales. For the weakly nonlinear wave turbulence models, the

energy transfer is of crucial importance in the determination of the wave ampli-

tude and needs to be considered carefully. Very little information, experimental or

theoretical, is available regarding the stresses, - < u_u_ >.
The weakly nonlinear analysis seeks normal mode solution ofthe large-scale tur-

bulent fluctuation. Locally, the fluctuations are described by the linearized Euler
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equations. On the other hand, the spatial extent of each of the modes of the large-

scale structures could be regarded as being determined by the wavenumber,, at.

Therefore, the proposition here is to estimate the characteristic size of the large

scales as the wavelength associated with the large structures, which are predicted

by the weakly nonlinear analysis. That is,

I lw = (15)
(2r

where l_, denotes the wavelength. Through dimensional reasoning, the enregy trans-

fer can be modeled by
k]

This is the proposed model for the energy transfer from the large scale to the small

scale. This estimate is in accord with the classic assumption of turbulence theory

that dissipation ".. proceeds at a rate dictated by the inviscid inertia behavior of

the large eddies", Tennekes and Lumley 20. Computationally, since the wavenumber

is already a part of the solution of the equations for the large-scale fluctuation, this

model involves no extra efforts in estimating the characteristic size of the energy

containin_g large scales. This rather simple model provides a closure to the equations

for the large-scale structure, thereby allowing render the weakly nonlinear wave

description of the large-scale structure to be self-contained. This self-contained

nature of the weakly nonlinear wave turbulence models may be important in the

future applications to other turbulent free shear flows.

The model is tested againit an incompressible plane mixing layer. Since the most"

unstable mode interacts most strongly with the mean flow 17, the most amplifying

local instability is used in the modeling of the average, overall interactions between

the mean and the large scale motions. Therefore, in the present formulation, the

characteristic length scale l_ is determined only by the locally most unstable modes.

Fig. 5 shows the predicted evolution of the streamwise mean velocity profiles

with axial distance. _ is a similarity coordinate,

• y - yi/2 (17)_/=
X -- Z 0

where Y112 denotes the location where the local mean velocity is one half of the free

stream velocity. The predicted self-similar profiles agree well with that compiled

by Pate121 except at the low speed edge of the layer. Similar differences were also

observed by Liou and Morris 17. They attributed this difference to the single mode

representation of the entire large scale spectrum and the uncertainties in the mea-

surements in this region resulting from the local large changes in the instantaneous

flow direction.

The streamwise evolution of the amplitude of the large-scale structures is shown

in Fig. 6. After a region of establishment, the amplitude reaches a saturated value.
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In this region, the rate of the production of the large-scale tfirbulent kinetic energy

from the mean flow is balanced by the rate of energy transfer from the large scales

to the small scales. Note that, for the present energy transfer model, the amplitude

equation becomes,

dA 2 A s A 3
d-"_" = G3(x) - G4(x) (18)

G3 and G4 denote the normalized positive definite integrals of the production terms

and interaction terms across the layer, respectively. The critical points of the nonlin-

ear equation (18), where dA2/dx = 0, are Aa = 0 and G4(x_)A2 = G3(x_). Simple

analyses by applying the Liapunov function method 22 show that A1 is an unstable

critical point. Any small disturbances to A2, say A_ would grow exponentially. In

fact,

ea'("') " (19)

As, on the other hand, is asymptotically stable. A disturbance about the A2, say

A_, would decay exponentially,

• (20)2

The saturated value of the amplitude, As, is an asymptotically equilibrium value.

It indicates an asymptotically equilibrium state of the large-scale structures. The

simple instability analyses also show that any deviation away from this equilibrium

state would be damped out exponentially. Consequently, the saturation of the wave

amplitude may provide an indication of the the self-similarity of the flow in terms

of the development of the large-scale structures.

3. Future Plans

3.1 A Two-Scale Model for Compressible Turbulent Flows

(1) Extend the two-scale model to wall-bounded flows.

(2) Continue the development of second-order closure models that account explic-

itly for the compressibility effects identified during the development of the two-scale

e.ddy-viscosity model.

3.2 A New Energy Transfer Model for Turbulent Free Shear Flows

(1) Apply the weakly nonlinear wave model to compressible mixing layers to

investigate the effects of compressibility on the characteristics of the coherent large-
scale structures.
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Figure 1. Variation of relative growth rate with convective Mach number, r - 0.1. n __,
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Figure 2. Variation of the peak Reynolds shear stress with convective Mach number.'+,
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Figure 6. Variation of the wave amplitude with streamwise distance.
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